Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutaredoxin catalysis requires two distinct glutathione interaction sites.

Identifieur interne : 000362 ( Main/Exploration ); précédent : 000361; suivant : 000363

Glutaredoxin catalysis requires two distinct glutathione interaction sites.

Auteurs : Patricia Begas [Allemagne] ; Linda Liedgens [Allemagne] ; Anna Moseler [Allemagne] ; Andreas J. Meyer [Allemagne] ; Marcel Deponte [Allemagne]

Source :

RBID : pubmed:28374771

Descripteurs français

English descriptors

Abstract

Glutaredoxins are key players in cellular redox homoeostasis and exert a variety of essential functions ranging from glutathione-dependent catalysis to iron metabolism. The exact structure-function relationships and mechanistic differences among glutaredoxins that are active or inactive in standard enzyme assays have so far remained elusive despite numerous kinetic and structural studies. Here, we elucidate the enzymatic mechanism showing that glutaredoxins require two distinct glutathione interaction sites for efficient redox catalysis. The first site interacts with the glutathione moiety of glutathionylated disulfide substrates. The second site activates glutathione as the reducing agent. We propose that the requirement of two distinct glutathione interaction sites for the efficient reduction of glutathionylated disulfide substrates explains the deviating structure-function relationships, activities and substrate preferences of different glutaredoxin subfamilies as well as thioredoxins. Our model also provides crucial insights for the design or optimization of artificial glutaredoxins, transition-state inhibitors and glutaredoxin-coupled redox sensors.

DOI: 10.1038/ncomms14835
PubMed: 28374771
PubMed Central: PMC5382279


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutaredoxin catalysis requires two distinct glutathione interaction sites.</title>
<author>
<name sortKey="Begas, Patricia" sort="Begas, Patricia" uniqKey="Begas P" first="Patricia" last="Begas">Patricia Begas</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liedgens, Linda" sort="Liedgens, Linda" uniqKey="Liedgens L" first="Linda" last="Liedgens">Linda Liedgens</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moseler, Anna" sort="Moseler, Anna" uniqKey="Moseler A" first="Anna" last="Moseler">Anna Moseler</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, D-53113 Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, D-53113 Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meyer, Andreas J" sort="Meyer, Andreas J" uniqKey="Meyer A" first="Andreas J" last="Meyer">Andreas J. Meyer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, D-53113 Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, D-53113 Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Deponte, Marcel" sort="Deponte, Marcel" uniqKey="Deponte M" first="Marcel" last="Deponte">Marcel Deponte</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28374771</idno>
<idno type="pmid">28374771</idno>
<idno type="doi">10.1038/ncomms14835</idno>
<idno type="pmc">PMC5382279</idno>
<idno type="wicri:Area/Main/Corpus">000354</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000354</idno>
<idno type="wicri:Area/Main/Curation">000354</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000354</idno>
<idno type="wicri:Area/Main/Exploration">000354</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutaredoxin catalysis requires two distinct glutathione interaction sites.</title>
<author>
<name sortKey="Begas, Patricia" sort="Begas, Patricia" uniqKey="Begas P" first="Patricia" last="Begas">Patricia Begas</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liedgens, Linda" sort="Liedgens, Linda" uniqKey="Liedgens L" first="Linda" last="Liedgens">Linda Liedgens</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moseler, Anna" sort="Moseler, Anna" uniqKey="Moseler A" first="Anna" last="Moseler">Anna Moseler</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, D-53113 Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, D-53113 Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meyer, Andreas J" sort="Meyer, Andreas J" uniqKey="Meyer A" first="Andreas J" last="Meyer">Andreas J. Meyer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, D-53113 Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, D-53113 Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Deponte, Marcel" sort="Deponte, Marcel" uniqKey="Deponte M" first="Marcel" last="Deponte">Marcel Deponte</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites (MeSH)</term>
<term>Catalysis (MeSH)</term>
<term>Glutamic Acid (metabolism)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Lysine (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Structure-Activity Relationship (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide glutamique (métabolisme)</term>
<term>Catalyse (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Lysine (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Relation structure-activité (MeSH)</term>
<term>Sites de fixation (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutamic Acid</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Lysine</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide glutamique</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Lysine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Catalysis</term>
<term>Kinetics</term>
<term>Mutation</term>
<term>Oxidation-Reduction</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Catalyse</term>
<term>Cinétique</term>
<term>Mutation</term>
<term>Oxydoréduction</term>
<term>Relation structure-activité</term>
<term>Sites de fixation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxins are key players in cellular redox homoeostasis and exert a variety of essential functions ranging from glutathione-dependent catalysis to iron metabolism. The exact structure-function relationships and mechanistic differences among glutaredoxins that are active or inactive in standard enzyme assays have so far remained elusive despite numerous kinetic and structural studies. Here, we elucidate the enzymatic mechanism showing that glutaredoxins require two distinct glutathione interaction sites for efficient redox catalysis. The first site interacts with the glutathione moiety of glutathionylated disulfide substrates. The second site activates glutathione as the reducing agent. We propose that the requirement of two distinct glutathione interaction sites for the efficient reduction of glutathionylated disulfide substrates explains the deviating structure-function relationships, activities and substrate preferences of different glutaredoxin subfamilies as well as thioredoxins. Our model also provides crucial insights for the design or optimization of artificial glutaredoxins, transition-state inhibitors and glutaredoxin-coupled redox sensors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28374771</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2041-1723</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<PubDate>
<Year>2017</Year>
<Month>04</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>Nature communications</Title>
<ISOAbbreviation>Nat Commun</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutaredoxin catalysis requires two distinct glutathione interaction sites.</ArticleTitle>
<Pagination>
<MedlinePgn>14835</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/ncomms14835</ELocationID>
<Abstract>
<AbstractText>Glutaredoxins are key players in cellular redox homoeostasis and exert a variety of essential functions ranging from glutathione-dependent catalysis to iron metabolism. The exact structure-function relationships and mechanistic differences among glutaredoxins that are active or inactive in standard enzyme assays have so far remained elusive despite numerous kinetic and structural studies. Here, we elucidate the enzymatic mechanism showing that glutaredoxins require two distinct glutathione interaction sites for efficient redox catalysis. The first site interacts with the glutathione moiety of glutathionylated disulfide substrates. The second site activates glutathione as the reducing agent. We propose that the requirement of two distinct glutathione interaction sites for the efficient reduction of glutathionylated disulfide substrates explains the deviating structure-function relationships, activities and substrate preferences of different glutaredoxin subfamilies as well as thioredoxins. Our model also provides crucial insights for the design or optimization of artificial glutaredoxins, transition-state inhibitors and glutaredoxin-coupled redox sensors.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Begas</LastName>
<ForeName>Patricia</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liedgens</LastName>
<ForeName>Linda</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moseler</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, D-53113 Bonn, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meyer</LastName>
<ForeName>Andreas J</ForeName>
<Initials>AJ</Initials>
<Identifier Source="ORCID">0000-0001-8144-4364</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, D-53113 Bonn, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Deponte</LastName>
<ForeName>Marcel</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Commun</MedlineTA>
<NlmUniqueID>101528555</NlmUniqueID>
<ISSNLinking>2041-1723</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3KX376GY7L</RegistryNumber>
<NameOfSubstance UI="D018698">Glutamic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K3Z4F929H6</RegistryNumber>
<NameOfSubstance UI="D008239">Lysine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018698" MajorTopicYN="N">Glutamic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008239" MajorTopicYN="N">Lysine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>05</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>02</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28374771</ArticleId>
<ArticleId IdType="pii">ncomms14835</ArticleId>
<ArticleId IdType="doi">10.1038/ncomms14835</ArticleId>
<ArticleId IdType="pmc">PMC5382279</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2002 Jan 30;511(1-3):145-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11821065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 11;278(28):25745-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Sep 29;31(38):9288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1390715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):24544-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2005 Jan;386(1):33-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15843145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Oct 28;353(3):629-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16181638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Apr 18;45(15):4785-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16605247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 3;281(44):33107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16956877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2007 Mar;63(Pt 3):288-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17327665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(12):1518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Dec;52(5):973-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17892447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2008 Jan;389(1):21-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18095866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Feb 5;47(5):1452-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8868-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Jun;19(6):2673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2008 Aug 15;72(3):1077-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18473363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Aug;7(8):1415-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18503006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Nov 21;283(47):32839-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Oct 21;47(42):11144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Sep 10;30(36):8883-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1888746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Jan 23;385(3):889-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18992757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Feb 17;48(6):1410-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19166312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Nov;1790(11):1486-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2010 Jan;6(1):241-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20024086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 May 14;398(4):614-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20347849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jul 5;266(19):12759-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2061338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Jan 1;16(1):17-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21707412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2012 Jul;279(14):2568-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22607473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Sep 1;19(7):708-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22978520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3217-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23036594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Aug;1830(8):4073-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23624334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2013 Dec;16(6):662-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23962819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2014 Feb;23(2):238-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24243781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Dec 16;4:506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24379821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2014 Apr 8;53(13):2185-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24611845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1513-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25264274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2015 May;396(5):401-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25581754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2015 May;396(5):495-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25781542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2016 May 1;24(13):680-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25867539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13735-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26483494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Sci. 2015 Jul 1;6(7):3788-3796</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29218148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1968 Apr 25;243(8):1942-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5646485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;252:283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1995 May 18;1249(1):29-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7766681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 Jul;73(7):2275-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Feb 4;235(5):1585-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8107093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Apr 6;32(13):3368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8461300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Mar 18;36(11):3199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9115997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1997 Dec;18(15):2714-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9504803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Dec 8;37(49):17145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860827</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Cologne</li>
<li>District de Karlsruhe</li>
<li>Rhénanie-du-Nord-Westphalie</li>
</region>
<settlement>
<li>Bonn</li>
<li>Heidelberg</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Begas, Patricia" sort="Begas, Patricia" uniqKey="Begas P" first="Patricia" last="Begas">Patricia Begas</name>
</region>
<name sortKey="Deponte, Marcel" sort="Deponte, Marcel" uniqKey="Deponte M" first="Marcel" last="Deponte">Marcel Deponte</name>
<name sortKey="Liedgens, Linda" sort="Liedgens, Linda" uniqKey="Liedgens L" first="Linda" last="Liedgens">Linda Liedgens</name>
<name sortKey="Meyer, Andreas J" sort="Meyer, Andreas J" uniqKey="Meyer A" first="Andreas J" last="Meyer">Andreas J. Meyer</name>
<name sortKey="Moseler, Anna" sort="Moseler, Anna" uniqKey="Moseler A" first="Anna" last="Moseler">Anna Moseler</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000362 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000362 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28374771
   |texte=   Glutaredoxin catalysis requires two distinct glutathione interaction sites.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28374771" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020